Dynamics of polymers in a particle-based mesoscopic solvent.
نویسندگان
چکیده
We study the dynamics of flexible polymer chains in solution by combining multiparticle-collision dynamics (MPCD), a mesoscale simulation method, and molecular-dynamics simulations. Polymers with and without excluded-volume interactions are considered. With an appropriate choice of the collision time step for the MPCD solvent, hydrodynamic interactions build up properly. For the center-of-mass diffusion coefficient, scaling with respect to polymer length is found to hold already for rather short chains. The center-of-mass velocity autocorrelation function displays a long-time tail which decays algebraically as (Dt)(-3/2) as a function of time t, where D is the diffusion coefficient. The analysis of the intramolecular dynamics in terms of Rouse modes yields excellent agreement between simulation data and results of the Zimm model for the mode-number dependence of the mode-amplitude correlation functions.
منابع مشابه
Mesoscopic description of solvent effects on polymer dynamics.
Solvent effects on polymer dynamics and structure are investigated using a mesoscopic solvent model that accounts for hydrodynamic interactions among the polymer beads. The simulation method combines molecular dynamics of the polymer chain, interacting with the solvent molecules through intermolecular forces, with mesoscopic multiparticle collision dynamics for the solvent molecules. Changes in...
متن کاملA family of time-staggered schemes for integrating hybrid DPD models for polymers: Algorithms and applications
We propose new schemes for integrating the stochastic differential equations of dissipative particle dynamics (DPD) in simulations of dilute polymer solutions. The hybrid DPD models consist of hard potentials that describe the microscopic dynamics of polymers and soft potentials that describe the mesoscopic dynamics of the solvent. In particular, we develop extensions to the velocity-Verlet and...
متن کاملMultiscale coupling of molecular dynamics and hydrodynamics: an application to bio-polymer translocation through a nanopore
A new multiscale approach to the modeling of polymer dynamics in the presence of a fluid solvent is presented. The approach combines Langevin Molecular Dynamics (MD) techniques with a mesoscopic Lattice-Boltzmann (LB) method for the self-consistent solvent dynamics. A unique feature of the present approach is that hydrodynamic interactions between the solute macromolecule and the aqueous solven...
متن کاملMesoscopic Solvent Dynamics in a Real Dimensional System
Hydrodynamic simulations of mesoscopic solvent have been performed by multi-particle collision algorithm in a real dimensional system without and with the random shifting of the grid. A systematic conversion of the dimensionless units to a real dimensional system was confirmed by jump rates of solvent particles. Speed distributions of solvent particles obtained from the simulations agreed very ...
متن کاملEffects of Electrostatic Interactions on the Translocation of Polymers Through a Narrow Pore Under Different Solvent Conditions: A Dissipative Particle Dynamics Simulation Study
Polymer translocation through a narrow pore is investigated using a particle-based dissipative particle dynamics (DPD) method. A rigid core is included in each particle to avoid particle interpenetration problems based on the original DPD method. Electrostatic interactions of charged particles are simply represented via screened Coulombic interactions. The average translocation time t versus po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 123 14 شماره
صفحات -
تاریخ انتشار 2005